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Abstract The role of insulin-like growth factor-I (IGF-I) in regulating estrogen receptor-a (ER-a) gene expression
and activity was investigated in the human breast cancer cell line MCF-7. Treatment of cells with 40 ng/ml IGF-I resulted
in a 60% decrease in ER-a protein concentration by 3 h, and the amount of ER-a remained suppressed for 24 h. A
multiple-dose ligand-binding assay demonstrated that the decrease in ER-a protein corresponded to a similar decrease of
50% in estradiol-binding sites with no effect on the binding affinity of ER-a. The dissociation constant of the
estradiol-ER-a complex in the absence of IGF-I (Kd 5 3 3 10210 6 0.5 3 10210 M) was similar to the dissociation
constant in the presence of IGF-I (Kd 5 6 3 10210 6 0.3 3 10210 M). The decrease in ER-a protein concentration was
paralleled by an 80% decrease in the steady-state amount of ER-a mRNA by 3 h. The IGF-I induced decrease in ER-a
mRNA was due to the inhibition of ER-a gene transcription. When an 128-base pair ER-a-promoter-CAT construct was
transfected into MCF-7 cells, treatment with IGF-I resulted in a 40% decrease in CAT activity. In contrast to the effects on
ER-a, treatment with IGF-I induced two endogenous estrogen-regulated genes, progesterone receptor and pS2, by 4- and
twofold, respectively. The pure antiestrogen ICI-164,384 blocked this induction, suggesting that ER-a mediates the
effects of IGF-I. Transient co-transfections of wild-type ER-a and an estrogen response element-CAT reporter into COS-1
cells demonstrated that IGF-I increased reporter gene activity. This effect was also blocked by ICI 164,384. Protein
kinase A and phosphatidylinositol 3-kinase inhibitors blocked the IGF-I effects on ER-a expression and activity,
suggesting that these kinases may be involved in the cross-talk between the IGF-I and ER-a pathways. J. Cell. Biochem.
76:605–614, 2000. r 2000 Wiley-Liss, Inc.
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Steroid receptors are ligand-regulated tran-
scription factors belonging to the superfamily
of intracellular receptors, which also includes
the retinoid, thyroid hormone, and vitamin D
receptors, as well as many orphan receptors
[Weigel, 1996]. Estrogens regulate the growth,
differentiation, and function of diverse target
tissues by binding to the estrogen receptor (ER).
The ER aporeceptor is usually found in a com-
plex with heat shock proteins before ligand-
dependent activation. Estrogens bind and in-

duce an allosteric conformational change in the
receptor that causes elimination of the heat
shock proteins and facilitates dimerization of
the receptor. The receptor dimer then binds
with high affinity to DNA, directing gene tran-
scription [Tsai et al., 1994]. Growth factors such
as epidermal growth factor (EGF), insulin-like
growth factors, and transforming growth fac-
tor-a and their receptors are target genes of the
ER [Westley et al., 1994].

Surprisingly, steroid receptors are also acti-
vated by extracellular signals from growth fac-
tors (EGF) [Ignar-Trowbridge et al., 1993; Zhang
et al., 1994], insulin-like growth factors [Aronica
et al., 1993; Ma et al., 1994; Newton et al.,
1994], and heregulin [Pietras et al., 1995],
neurotransmitters (dopamine), second messen-
gers (cyclic adenosine monophosphate [cAMP])
[Aronica et al., 1993; Zhang et al., 1994; Denner
et al., 1990], and mitogen-activated protein ki-
nase (MAPK) [Bunone et al., 1996]. Activation
of steroid receptors in the absence of hormones,
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referred to as steroid-independent activation,
has been demonstrated for ER [Bunone et al.,
1996; Ignar-Trowbridge et al., 1992; El-Tanani
et al., 1997a], progesterone receptor [Mani et
al., 1994; Mani, 1996], and androgen receptor
[Culig, 1994; Nazareth et al., 1996], whereas
the glucocorticoid and the mineralocorticoid re-
ceptors have proved refractory to agents that
activate the other receptors. While evidence
has accumulated for a cross-talk between the
peptide and the steroid pathways, the mecha-
nism of this cross-talk has not yet been eluci-
dated.

Insulin-like growth factor-I (IGF-I) belongs
to a family of growth factors involved in the
regulation of normal and malignant cell growth,
differentiation, and development. This 70-resi-
due, single-chain polypeptide [Umayahava et
al., 1994] is produced by the liver under the
control of growth hormone. Besides its endo-
crine effects, IGF-I is produced in most organs
and tissues and can function as an autocrine or
paracrine growth stimulator [Yee, 1994]. Insu-
lin-like growth factor-I exerts its actions through
binding to IGF-I receptor I, which is a trans-
membrane protein with tyrosine kinase activ-
ity. In all extracellular fluids, binding of IGF-I
to the IGF receptor is modulated by a group of
soluble proteins, called IGF-binding proteins
[Yee, 1994]. The binding of IGF-I to its receptor
initiates a cascade of phosphorylations that ac-
tivate cellular kinases and nuclear transcrip-
tion factors.

The activity of the IGF-I receptor appears to
play a critical role in the regulation of breast
cancer cell growth [Yee, 1994; Lee et al., 1997].
The amount of IGF-I receptor is significantly
higher in breast cancer than in normal breast
tissue or benign tumors. In primary breast can-
cer, a correlation has been found between tu-
mor size, the levels of the cellular substrate of
the IGF-I receptor, insulin receptor substrate 1
(IRS-1), and recurrence of the disease [Rocha et
al., 1995]. In the MCF-7 breast cancer cell line,
the coexpression of either IRS-1 [Surmacz et
al., 1995], IGF receptor I [Guvakova et al.,
1997a], or IGF-II [Cullen et al., 1992] has been
shown to reduce estrogen growth dependence
[Guvakova et al., 1997b]. Inhibition of IGF re-
ceptor I signaling with anti-IGF receptor anti-
bodies, antisense RNA to the IGF-I receptor, or
antisense oligonucleotides to the insulin sub-
strate-1 restricts breast cancer cell growth both
in vitro and in vivo [Guvakova et al., 1997b]. A

similar effect has been reported in breast tumor
xenografts in vivo. Insulin-like growth factors
dramatically increase cell proliferation in the
presence of estrogen in MCF-7 cells [Stewart et
al., 1990]. It has been postulated that the com-
bined effects of estradiol and IGF-I may stimu-
late proliferation in normal mammary epithe-
lium, increasing the risk of breast cancer.
Antiestrogens have been shown to inhibit IGF
receptor I-dependent growth through different
mechanisms, such as downregulation of auto-
crine IGF secretion or modulation of IGF-
binding protein expression [Winston et al.,
1994]. In addition, antiestrogens decreased ex-
pression of IGF-I-binding sites and suppressed
the activation of insulin receptor substrate-1-
associated phosphatidylinositol 3-kinase in
MCF-7 cells. Estrogens also regulate expres-
sion of IGF receptor-I and IGF-I messenger
RNA (mRNA) in some ER-positive breast can-
cer cell lines, such as MCF-7 and T47D, as well
as in the neuroblasoma cell line SK-ER3 [Ma et
al., 1994], in uterine tissue [Westley et al.,
1994; Sahlin et al., 1994], and in osteoblasts
[Westley et al., 1994].

In contrast with the effects of estrogens on
the IGF-I pathway, regulation of estrogen sig-
naling by IGFs is less well defined. Early stud-
ies demonstrated that antiestrogens inhibited
IGF-mediated proliferation [Chalbos et al.,
1993]. It was suggested that inhibition was due
to regulation of receptor-binding sites and tyro-
sine kinase activity by the antiestrogen. How-
ever, a number of later studies demonstrated
that growth factors directly increased the tran-
scriptional activity of ER, which was specifi-
cally inhibited by antiestrogens [Stancel et al.,
1987; Ma et al., 1994; Newton et al., 1994;
Westley et al., 1994; Clayton et al., 1997; Lee et
al., 1997]. Although the mechanism by which
growth factors activate the ER remains un-
clear, receptor phosphorylation is thought to
play a role. Upon stimulation of uterine cells
with IGF-I, the estrogen receptor is phosphory-
lated [Sahlin et al., 1994]; however, phosphory-
lation does not always correlate with transcrip-
tional activity of the receptor [Lee et al., 1997].

This article reports work on the role of IGF-I
in the regulation of ER-a gene expression and
activity, which was studied in the ER-positive
breast cancer cell line MCF-7. The effects of
IGF-I on ER-a protein, mRNA, and transcrip-
tion were studied. The effects of IGF-I on endog-
enous estrogen-regulated genes were measured
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and the signal transduction pathway exam-
ined.

MATERIALS AND METHODS
Tissue Culture

Monolayer cultures of MCF-7 breast cancer
cells were grown in improved minimal essential
medium (IMEM) supplemented with 5% (vol/
vol) fetal calf serum (FCS). When the cells were
80% confluent, the medium was replaced with
phenol red-free IMEM containing 5% charcoal-
treated calf serum (CCS). Calf serum was pre-
treated with sulfatase and dextran-coated char-
coal to remove endogenous steroids. After 2
days under these conditions, the medium was
changed to serum-free phenol red-free IMEM
supplemented with 2 mg/ml fibronectin, 5 ng/ml
glutamine, Hepes, 5 ml trace elements, and 5
ng/ml transferrin. The cells were treated with
1029 M estradiol (Sigma Chemical Co., St. Louis,
MO) or with 40 ng/ml IGF-I (Biosource, Camar-
illo, CA) for the appropriate times.

Plasmids

The probe for the ER-a, pOR-300, was con-
structed by subcloning a 300-base pair (bp)
restriction fragment of pOR3 into the pGem4
polylinker regions using the restriction en-
zymes PstI and EcoRI [Saceda et al., 1988]. The
genomic clone corresponding to exon 1, Q7, is a
3-kilobase (kb) EcoRI-SalI fragment subcloned
into Bluescript M131 (Stratagene, La Jolla, CA)
[Saceda et al., 1988]. The clone 36B4 was con-
structed by subcloning a 220-bp fragment of
36B4 into the PstI restriction site of the pGem
polylinker [Saceda et al., 1988]. In addition, the
clones for glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) [Kastner et al., 1990], pS2,
and progesterone receptor [Ignar-Trowbridge
et al., 1992] were used as previously described.

Estrogen Receptor-a and Progesterone Receptor
Protein Assays

For analysis of ER-a and progesterone recep-
tor protein concentration, MCF-7 cells were
cultured and treated as described above. The
concentration of receptor protein was deter-
mined using an enzyme immunoassay kit from
Abbott Laboratories (North Chicago, IL). To
obtain total receptor protein, the cells were
homogenized by sonication in a high salt buffer
(10 mM Tris, 1.5 mM EDTA, 5 mM Na2 Mo O4,
0.4 M KCl, and 1 mM monothioglycerol with 2

mM leupeptin). The homogenate was incubated
on ice for 30 min and centrifuged at 100,000g
for 1 h at 4°C. Aliquots of the total extracts were
then analyzed according to the manufacturer’s
instructions.

To measure the number of estrogen-binding
sites and the dissociation constant (Kd) of the
estradiol-ER-a complex, a whole-cell, multiple-
dose ligand-binding assay was used [Stoica et
al., 1997]. Cells were plated in 6-well plates,
and at approximately 70% confluence they were
treated with 0.4 ng/ml IGF-I for 24 h. Then the
cells were incubated for 1 h with various concen-
trations of [3H]estradiol. A 200-fold excess of
diethylstilbestrol (DES) was used to distin-
guish between specific and nonspecific binding.
The cells were washed and lysed. The protein
content and radioactivity present in each sam-
ple was quantified and analyzed by the method
of Scatchard.

Measurement of ER-a mRNA

Total cellular mRNA was extracted from
MCF-7 cells by the RNazol method. The
amounts of ER-a, 36B4, progesterone receptor,
and GAPDH were determined by an RNase
protection assay. Briefly, homogeneously 32P-
labeled antisense cRNA were synthesized in
vitro from pOR-300, 36B4, pGAPDH using T7
polymerase and from progesterone receptor us-
ing SP6. Sixty micrograms of total RNA were
hybridized for 12–16 h to the radiolabeled cRNA.
After a 30 min digestion at 25°C with RNase A,
32P-labeled cRNAprobes protected by total RNA
were separated by electrophoresis on 6% poly-
acrylamide gels. The bands were visualized by
autoradiography and quantified using the phos-
phorimager. The amounts of ER-a mRNA and
progesterone receptor mRNA were normalized
to the internal controls 36B4 and GAPDH, re-
spectively.

Transfection and CAT Assays

In the transfection assays, 106 MCF-7 cells
were plated in 100 mm dishes and grown in
IMEM supplemented with 10% CCS for 24 h
before transfection. Calcium-phosphate DNA
precipitates containing 5 µg ER-a promoter-
CAT vector, 2 µg b-galactosidase vector, and 23
µg carrier DNA were prepared, and the cells
were transfected by the method of Chen and
Okayama [Chen et al., 1987]. At 18 h after
transfection, cells were washed, and the me-
dium was replaced with phenol red-free IMEM
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supplemented with 10% CCS. After 24 h in
estrogen-depleted medium 40 ng/ml IGF-I was
added. Cell lysates were prepared 6 h after
IGF-I treatment and analyzed for CAT activity
by a standard protocol [Garcia-Morales et al.,
1994]. The conversion of [14C]chloramphenicol
to its acetylated forms was determined by thin
layer chromatography (TLC). The reaction prod-
ucts were analyzed by a phosphorimager (Mo-
lecular Dynamics). CAT activity was expressed
as the percentage conversion of chlorampheni-
col to its acetylated forms and was normalized
to the b-galactosidase activity. b-Galactosidase
activity was determined as a measure of the
transfection efficiency.

In a second series of transient transfection
assay, COS-1 cells were maintained at 37°C in
5% CO2 in IMEM phenol red-free medium with
10% CCS. COS-1 cells were plated at 3 3 106

cells per 150-mm plate. After 24 h, the plates
were transfected by the calcium phosphate pre-
cipitation technique [Chen et al., 1987]. Cells
were transfected with 3 ml of DNA precipitate
containing 15 µg pRER expression vector encod-
ing ER-a, 75 µg pb-CAT (S)MERE reporter
construct, 2 µg b-galactosidase, and salmon
sperm carrier DNA to a total of 90 µg of DNA.
At 18 h later, cells were washed and IGF-I was
added for 6 h. The cells were harvested and
prepared for CAT assay as described above.

RESULTS
Effect of IGF-I on the Concentration of the

Estrogen Receptor-a

To define the role of IGF-I in the expression of
estrogen receptor-a in breast cancer, the effects
of IGF-I on the concentration of the ER-a pro-
tein in MCF-7 cells was determined. MCF-7
cells were treated with 40 ng/ml IGF-I and the
concentration of ER-a was measured using an
enzyme immunoassay. The results presented in
Figure 1 show that IGF-I treatment resulted in
a decline in total receptor protein by about 60%
at 3 h, and the amount of receptor remained
suppressed for 24 h. Receptor protein declined
from a concentration of approximately 457
fmol/mg protein in control cells to 183 fmol/mg
protein in cells treated with IGF-I.

To determine whether the decrease in ER-a
protein corresponded to a similar decrease in
estradiol-binding sites, the binding capacity and
affinity of ER-a were determined using a mul-
tiple-dose ligand-binding assay. Scatchard plots
for control and IGF-I treated cells are pre-

sented in Figure 2. After treatment with 40
ng/ml IGF-I, a significant decrease in the estra-
diol-binding capacity was observed. The num-
ber of estrogen-binding sites decreased from
315 fmol/mg protein in control cells to 158
fmol/mg protein in treated cells, indicating a
50% decrease in ER-a-binding sites. These re-
sults were consistent with those obtained with
the enzyme immunoassay. Scatchard analysis
indicated that treatment with IGF-I did not
alter the binding affinity of estradiol to the
receptor (Kd 5 3 6 0.5x10210 M, n 5 3, r 5 -0.89
in control cells compared with Kd 5 6 6 0.3 3
10210 M, n 5 3, r 5 20.79 in IGF-I-treated
cells). These results suggest that although IGF-I
decreased the number of receptor sites, it did
not alter the affinity of the receptor for its
ligand.

Effect of IGF-I on the steady-state
amount of the estrogen receptor-a mRNA.
To determine whether the decline in estrogen
receptor to a new steady-state amount was
accompanied by a parallel decrease in ER-a
mRNA, MCF-7 cells were treated with 40 ng/ml
IGF-I and ER-a mRNA was measured using an
RNase protection assay. The changes in ER-a
mRNA were quantified by scanning densitom-
etry, and the data are presented as the ratio of

Fig. 1. Effect of insulin-like growth factor-I (IGF-I) on estrogen
receptor-a (ER-a) protein concentration. MCF-7 cells were grown
in 5% charcoal-treated calf serum (CCS). After 2 days, the
medium was replaced with serum-free medium and the cells
were treated with 40 ng/ml IGF-I for the times indicated. Total
ER-a was determined with an enzyme immunoassay as de-
scribed under Materials and Methods. Results were repeated 10
times and are presented as a percentage of control values 6 SD.
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the integrated ER-a signal to the integrated
36B4 signal. The results are shown in Figure 3.
Insulin-like growth factor-I treatment of MCF-7
cells resulted in a maximum suppression of
ER-a mRNA to approximately 20% of the con-
trol value by 3 h, with a small, but statistically
nonsignificant, recovery in the amount of mRNA
at 24 h.

Effect of IGF-I on Estrogen Receptor-a
Gene Transcription

The IGF-I-mediated decrease in the amount
of ER-a mRNA may be due to either a transcrip-
tional or a posttranscriptional mechanism. To
rule out a posttranscriptional process, the effect
of IGF-I on the stability and nuclear transport
of ER-a mRNA was measured. In these studies,
IGF-I did not alter ER-a mRNA transport be-
tween the nucleus and cytoplasm and had no
effect on ER-a mRNAstability (data not shown).

These data strongly suggested a transcrip-
tional mechanism. To determine whether IGF-I
inhibited transcription of the ER-a-gene, 128
bp of the proximal promoter from nucleotides
2128 to 11 were linked to the CAT reporter
gene and transfected into MCF-7 cells. The
transfected cells were treated with 40 ng/ml
IGF-I for 6 h. Cells were harvested and assayed
for CAT activity. To control for transfection effi-
ciency, b-galactosidase activity was measured.
The results are presented in Figure 4 as percent-
age of control values. IGF-I treatment resulted
in an approximately 40% decrease in CAT activ-
ity, suggesting that the IGF-I induced decrease
in ER-a mRNA was due to an inhibition of
transcription of the ER-a gene.

Signal Transduction Pathways in the Regulation
of Estrogen Receptor-a

To gain insight into the signal transduction
pathways involved in the regulation of ER-a
expression by IGF-I, several inhibitors of pro-
tein kinases were employed. The inhibitor
KT5720 was used to block protein kinase A
[Fishman, 1997]. Wortmannin (KY 12420), a
fungal metabolite, was employed to inhibit phos-
phatidylinositol 3-kinase [Vlakos, 1994], and
ultimately protein kinase B [Jones, 1995]. The

Fig. 2. Effect of insulin-like growth factor-I (IGF-I) on the
binding of estradiol to the estrogen receptor-a (ER-a). MCF-7
cells were grown in 6-well plates and treated with increasing
concentrations of [3H]estradiol in the absence (BT) or presence
(BN) of a 200-fold molar excess of diethylstilbestrol. Free radio-
activity (F) was removed by washing the wells with medium
supplemented with 1 mg/ml bovine serum albumin (BSA). The
results were graphically represented according to the Scatchard
equation. The specific binding, BS, was calculated as the differ-
ence between the total binding, BT, and the nonspecific bind-
ing, BN. Bs8 is the binding capacity expressed in moles per liter
(mol/L). From the slope of the plot and the abscissa to the origin,
the dissociation constant of the complex (Kd) and the binding
capacity (Bmax) were determined, respectively. A representative
assay is shown for control cells and IGF-I-treated cells. These
experiments were repeated three times.

Fig. 3. Effect of insulin-like growth factor-I (IGF-I) on the
steady-state amount of estrogen receptor-a (ER-a) mRNA. MCF-7
cells were grown as described in Fig. 1 and treated with 40
ng/ml IGF-I. Total RNA was isolated using Rnazol, and 60 µg
was analyzed using an RNase protection assay as described
under Materials and Methods. Results are presented as percent-
age of control values. Data represent the mean of six experi-
ments 6 SD.
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most potent and selective synthetic inhibitor,
H-7, was selected to block protein kinase C
[Ingles, 1997]. In this study, MCF-7 cells were
treated for 6 h with 5 3 1027 M of KT5720,
100 nM wortmannin, or 5 3 1027 M H7 in the
presence or absence of 40 ng/ml IGF-I. ER-a
protein concentration was determined using
the enzyme immunoassay. The results are pre-
sented in Figure 5. While the protein kinase
inhibitors had no effect on the expression of
ER-a, KT5720 and wortmannin blocked the
IGF-I induced decrease in ER-a protein by ap-
proximately 90%. Similar results were ob-
served at the level of ER-a mRNA (data not
shown). In addition, KT7520 and wortmannin
blocked the effect of IGF-I on the ER-a promoter
(Fig. 4), suggesting that the effect of IGF-I on
ER-a gene expression is mediated by protein
kinase A and phosphatidylinositol 3-kinase.

Effect of IGF-I on the Activity of ER-a

To test the effect of IGF-I on the transcrip-
tional activity of ER-a, the ability of IGF-I to
induce estrogen-regulated genes, progesterone
receptor and pS2, was determined. The amounts
of progesterone receptor mRNA and pS2 mRNA
were measured by an RNase protection assay
and the results are presented in Figures 6 and
7, respectively. Estradiol induced a fourfold in-

crease in progesterone receptor mRNA, whereas
IGF-I increased the steady-state amount of pro-
gesterone receptor mRNA by threefold. When
estradiol and IGF-I were added simultaneously,
there was an additive effect (sevenfold induc-
tion) (Fig. 6). Similar results were obtained
with pS2 mRNA. Estradiol induced a threefold
increase in pS2 mRNA. A twofold induction was
obtained after IGF-I treatment and an approxi-
mately fivefold induction was observed when
estradiol and IGF-I were added simultaneously
(Fig. 7). In both cases, the IGF-I induced effect
was blocked by the antiestrogen ICI 164,384,
suggesting that the IGF-I effect is mediated by
ER-a.

The effect of IGF-I on the ER-a activity was
also investigated in transient co-transfection
assays employing ER-a and an estrogen re-
sponse element-CAT reporter construct. The
ER-a expression vector and the reporter con-
struct were co-transfected into COS-1 cells
treated with either estradiol or IGF-I in the
presence or absence of ICI 164,384, and CAT
activity was determined by thin layer chroma-
tography. The results from several independent
experiments are summarized in Figure 8. Estra-
diol increased CAT activity fourfold, IGF-I pro-
duced an approximately twofold increase in
CAT activity, while estradiol plus IGF-I pro-
duced an approximately fivefold increase in CAT
activity. The increase in CAT activity was also

Fig. 4. Effect of insulin-like growth factor-I (IGF-I) on the
estrogen receptor-a promoter. MCF-7 cells were transiently
transfected with the estrogen receptor-a (ER-a) promoter-
chloramphenicol acetyl transferase (CAT) vector, pER 128-CAT,
which contains 128 bp of the proximal promoter, linked to the
CAT reporter gene. After transfection, cells were treated with 40
ng/ml IGF-I for 6 h in the presence or absence of 100 nM wortman-
nin or 5 3 1027 M of KT7520. Cells were harvested and assayed
for CAT activity as described under Materials and Methods. The
results are expressed as a percentage of control. The experiment
was performed in triplicate and repeated five times 6 SD.

Fig. 5. Effect of protein kinase inhibitors on the insulin-like
growth factor-I (IGF-I) regulation of estrogen receptor-a (ER-a).
MCF-7 cells were grown as described in Fig. 1 and treated with
either 1029 M estradiol or 40 ng/ml IGF-I in the presence or
absence of 5 3 1027 M KT7520, H7, or 100 nM wortmannin.
The concentration of ER-a was measured by the enzyme immu-
noassay as described under Materials and Methods. The results
are the mean of four experiments 6 SD and are expressed as a
percentage of control values.
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blocked by ICI 164,384. The inhibitor wortman-
nin was also employed to identify the pathway
involved in the regulation of ER-a activity (Figs.
6–8). Similar to the results observed on the

expression of ER-a, wortmannin blocked the
effect of IGF-I on ER-a activity, suggesting that
the pathway that regulates ER-a expression
also regulates ER-a activity.

DISCUSSION

While it is clear that estrogen affects insulin-
like growth factor action by altering the expres-
sion of several members of the IGF signal path-
way, this article describes the regulation of
ER-a gene expression and activity by IGF-I.
The relationship between the steady-state
amounts of ER-a protein, receptor mRNA, and
promoter activity were examined in the ER-
positive breast cancer cell line, MCF-7. The
results presented herein demonstrate that treat-
ment with IGF-I resulted in an approximately
60% decrease in the steady-state amount of
ER-a protein with no alteration in the binding
affinity of estradiol similar to the down-regula-
tion observed in rat uterus [Sahlin et al., 1994].
This study further demonstrates that the de-
cline in ER-a protein accompanied a parallel
decrease (approximately 80%) in the amount of
receptor mRNA. Transient transfections using
an ER-a promoter-CAT construct also showed
an approximately 60% decrease in CAT activity
after IGF-I treatment, suggesting that a poten-

Fig. 6. Effect of insulin-like growth factor-I (IGF-I) on expression of
the progesterone receptor. MCF-7 cells were grown as described in
Fig. 1 and treated with 1029 M estradiol, 40 ng/ml IGF, or estradiol
plus IGF-I in the presence or absence of 100 nM wortmannin or 5 3

1027 M ICI for 6 h. The concentration of progesterone receptor was
determined by the enzyme immunoassay as described under Mate-
rials and Methods. The results represent the mean value of five
experiments 6 SD and are presented as a percentage of control
values.

Fig. 7. Effect of insulin-like growth factor-I (IGF-I) on the
steady-state concentration of pS2 mRNA. MCF-7 cells were
grown and treated as described in Fig. 5. Total RNA was isolated
using Rnazol, and 60µg was analyzed by an RNase protection
assay as described under Materials and Methods. The results
represent the mean value of four experiments and are presented
as a percentage of control values.

Fig. 8. Effect of insulin-like growth factor-I (IGF-I) on estrogen
receptor-a activity in COS-1 cells. COS-1 cells were transiently
co-transfected with a wild-type ER-a expression vector and an
estrogen response element-CAT reporter construct using the
calcium phosphate method as described under Materials and
Methods. Transfected cells were treated with 1029 M estradiol,
40 ng/ml IGF-I, or IGF-I plus estradiol in the presence or
absence of 100 nM wortmannin for 6 h. CAT activity was
measured as described under Materials and Methods. The re-
sults were normalized to the b-galactosidase activity. The data
represent the mean value of four experiments and are expressed
as a percentage of the CAT activity in untreated cells.
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tial negative IGF-I response element is present
within the proximal promoter of the ER-a gene.
IGF-I response regions elements have been
identified in the chicken d-1-crystalline gene
[Alemany et al., 1990, 1992] and the rat elastin
gene [Wolfe et al., 1993; Jensen et al., 1995].
These regions are GC-rich domains that bind
the ubiquitous transcription factor Sp1 [Bu-
none et al., 1996; Yee, 1994]. A 30-bp GC-rich
IGF response element was also identified in the
porcine P-450 cholesterol side-chain cleavage
gene, P-450 11A [Urban et al., 1994]. This P-450
11A IGF response element stimulates gene ex-
pression in MCF-7 cells [Urban et al., 1996]. In
addition to positive IGF-I response elements,
negative insulin response elements have been
identified in the genes of the IGF-binding pro-
tein-1 [Suwanickul et al., 1993], a-amylase
[Johnson et al., 1993], phosphoenolpyruvate car-
boxykinase (PEPCK) [O’Brien et al., 1990], and
glucagon [Philippe, 1991]. Each of these nega-
tive insulin response elements contains an AT-
rich region with four consecutive thymidine
residues. Alignment of the sequences of the
negative response elements provides a consen-
sus sequence, CTTTG. The ER-a promoter con-
tains a similar sequence between -59 and -54.
The role of this putative negative response ele-
ment in mediating the effects of IGF-I on ER-a
gene expression is unknown but is currently
under investigation in our laboratory.

Steroid-independent activation of the ER-a
by IGF-I has been demonstrated in MCF-7 cells
[Katzenellenbogen et al., 1990; El-Tanani et al.,
1997b; Lee et al., 1997; Chalbos et al., 1993]
and in transient transfection assays in pitu-
itary tumor cells [Newton et al., 1994], neuro-
blastoma cells [Ma et al., 1994], human ovarian
adenocarcinoma cells [Stancel et al., 1987], Chi-
nese hamster ovary cells [Ignar-Trowbridge et
al., 1996], and MCF-7 cells [Pakdel et al., 1993].
However, ER-a activation by IGF-I is not a
universal phenomenon. In transiently co-trans-
fected HeLa cells, IGF-I failed to activate the
estrogen receptor [Jensen, 1996]. In this study,
the ability of IGF-I to activate ER-a was demon-
strated in MCF-7 and COS-1 cells. In MCF-7
cells, IGF-I induced several endogenous estro-
gen-regulated genes. The induction of progester-
one receptor and pS2 was additive with estra-
diol and was blocked by the pure antiestrogen
ICI 164,384. Additionally, IGF-I increased CAT
activity from an estrogen response element-
CAT reporter plasmid either transiently trans-

fected into MCF-7 cells or co-transfected with a
wild-type human ER-a expression vector into
COS-1 cells. In both cases, the pure antiestro-
gen ICI 164,384 blocked the effect of IGF-I,
providing additional evidence for the cross-talk
between the IGF-I and ER-a pathways.

Cell proliferation and differentiation in re-
sponse to IGF-I is mediated principally by two
signaling pathways: the Ras-Raf-MAPK path-
way and the phosphatidylinositol 3-kinase and
p70/S6 kinase pathway. The pathway involved
in mediating these responses depends on the
cell [Coolican et al., 1997; Petley et al., 1999]. In
myoblasts [Coolican et al., 1997], adipocytes
[Valverde et al., 1997], and 3T3 fibroblasts
[Teruel et al., 1996], IGF-I clearly employs the
Ras-Raf-MAPK pathway for signaling cell pro-
liferation, whereas in MCF-7 cells [Dufourny et
al., 1997], brain capillary cells [Kanda et al.,
1997], and human fibroblasts [Takahashi et al.,
1997], the proliferative response to IGF-I is
mediated by phosphatidylinositol 3-kinase and
p70/S6 kinase. Alternatively, IGF-I-induced dif-
ferentiation in myoblasts [Coolican et al., 1997]
and adipocytes [Kaliman et al., 1998] is medi-
ated by the phosphatidylinositol 3-kinase path-
way, and in neuroblastoma cells [Valverde et
al., 1997], differentiation is mediated by the
MAP kinase pathway. In this report, we demon-
strate that regulation of ER-a expression and
activity by IGF-I was blocked by wortmannin
and KT7520, providing evidence that phospha-
tidylinositol 3-kinase and protein kinase A are
involved in mediating the IGF-I response. These
data suggest that the pathway that mediates
the proliferative response to IGF-I also regu-
lates ER-a expression. However, further stud-
ies are necessary to more precisely define the
cross-talk between ER-a and IGF-I.

The data obtained in this study demonstrate
that IGF-I decreases ER-a gene expression
while increasing the activity of the receptor.
The decrease in the ER-a gene transcription
may be mediated by a putative negative re-
sponse element in the proximal promoter of the
gene. The effects of the growth factor on ER-a
expression and activity require protein kinase
A and phosphatidylinositol 3-kinase, suggest-
ing a link between the proliferative pathway of
IGF-I and ER-a.
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